
ANALYSIS OF THE SACK PROBLEM WITH DETAILED 

INCLUSION OF INTERATOMIC COHESIVE FORCES 

V. M. Aleksandrov and B. I. Smetanin UDC 539.3 

Elsewhere [i] we considered the Griffiths problem with detailed inclusion of the inter- 
atomic cohesive forces acting between the edges of a crack. The cohesive forces are intro- 
duced into the boundary conditions and as a result the problem reduces to a nonlinear integro- 
differential equation. In a similar formulation in this paper we consider an axisymmetric 
problem of the tension of an elastic space weakened by a flat crack in the plane. The prob- 
lem is reduced to one of solving a nonlinear integrodifferential equation, which is done by 
methods of regular and spliced asymptotic expansions. Using one of the asymptotic solutions, 
we also obtained a numerical solution of the integrodifferential equation under study. The 
parameters of the critical state of the crack are determined from the conditions of smooth 
closing of the crack edges. 

i. Supopse that an elastic space with a regular atomic lattice contains a round crack 
of radius a in the plane z = 0. The crack is in an open state under tensile forces o z = p = 
const applied at infinity. When the normal interatomic distance b is exceeded cohesive 
forces arise between the layers of atoms; the strength o z of these forces can be taken in 
the form [i] 

o, = 2Oeg ( t / d )  (O = G (1 - v)-~). ( 1 . 1 )  

Here G is the shear modulus; v is Poisson's ratio; e = &b/b; b + ~b is the distance between 
layers of atoms; and d = ~/b is the relative distance between layers of atoms at which the 
cohesive forces reach a maximum equal to Op, the theoretical strength of the solid. The 
function g(x) decreases monotonically no slower than x -~ (~ > 2) and satisfies the conditions 

g ( O ) =  1, g (,~) = O, g ( ] ) + g ' ( l ) = O .  

On the basis of (i.i) we find the effective surface energy density of the medium [2] 

7 = ozd~ = 2g(;)  I x g ( x )  d x  . ~ 

d 

S u p p o s e  t h a t  F ( r )  = 2 U z ( r  , +0)  i s  t h e  c r a c k  o p e n i n g  (u  z i s  a c o m p o n e n t  o f  t h e  d i s p l a c e -  

ment  v e c t o r ) .  We a s sume  t h a t  t h e  c r a c k  b e g i n s  w h e r e  t h e  d i s t a n c e  b e t w e e n  l a y e r s  o f  a t o m s  
becomes  e q u a l  t o  b + 6,  w h i c h  means  t h a t  F ( a )  = 0 and  g z ( a ,  •  = Op on t h e  c r a c k  c o n t o u r .  
I n c l u s i o n  o f  t h e  i n t e r a t o m i c  c o h e s i v e  f o r c e s  r e s u l t s  i n  t h e  f o l l o w i h g  b o u n d a r y  c o n d i t i o n s  

z = O ,  x ,z=O ( O ~ < r < ~ ) ,  u~=O ( a < r < ~ ) ,  

=_2e_ 1 + g 1 +  ( O ~ < r ~ a ) .  oz g ( l )  

At infinity o z = p. We disregard the fact that by (i.i) the problem is physically non- 
linear in the vicinity of the crack contour and assume that the equations of the linear 
theory of elasticity are valid everywhere outside the crack. The application of the integral 
Hankel transform to the problem obtained for the function F(r) reduces the problem to one 
of solving the nonlinear integrodifferential equation 
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(r~ S r Or ~ xF (x) dx lo (ur) 1o (ux) du = ~ [ / ( r )  - p l, 
0 

r ( l ) = O ,  O ~ r < l ,  / (F)=( l+F)g( l+F) /g( l ) ,  

( 1 .3 )  

where J0(z) /is a Bessel function: 

F. = F / ~ ;  p,  = p / % ;  

The asterisk is omitted in (1.3) and below. 
condition [3] 

= r/a; k = b I4ag(1)l-k 

The critical load p is determined from the 

r'o) = 0. 

I n v e r t i n g  t h e  o p e r a t o r  on  t h e  l e f t  s i d e  o f  ( 1 . 3 ) ,  we r e d u c e  ( 1 . 3 )  t o  t h e  f o r m  

(1.4) 

F (r) = 2p (x),) -t v i  - ? - A / ( F ) / X ,  F (1) = 0, 0 < r ~ 1, (1 .5 )  

t 

r 0 

Condition (1.4) with allowance for (1.5) leads to the following representation of p: 

! 

f ~ (r) p = - - d x .  ( 1 . 6 )  ~L-V 
0 

Considering that maxlf(x) l = f(O) : i for x e [0, ~), we can show that p is less than i. 
It is sufficient for this purpose to estimate the integral (1.6), 

I I 

P " fxl/(l')lV~l~ d x ' m a x r l / ( F ) l  f l'r = I .  

0 0 

We note that the trivial solution F : 0 of Eq. (1.5), (1.6) occurs for p = i. 

2. The solution of (1.5), (1.6) for small values of ~ is constructed as asymptotic 
expansions 

Coefficients A n (n = 0, 
( 1 . 4 ) :  

F (r) = k IFo (r) + ),-Cl (r) + ),? F2 (r) + O (X 3) 1; ( 2 . 1 )  

p = I - X2IAo + XA, + X2A2 + O (X3)i. ( 2 . 2 )  

i, 2) can be determined from the condition that follows from 

F,' (1) = 0 (n = 0, 1, 2). ( 2 . 3 )  

I n t r o d u c i n g  ( 2 . 1 )  a n d  ( 2 . 2 )  i n t o  ( 1 . 5 )  a n d  ( 1 . 6 )  a n d  e q u a t i n g  t h e  e x p r e s s i o n s  f o r  i d e n -  
t i c a l  powers of ~, we obtain integral equations from which we successively find r0(r), Fz(r), 
and F2(r) : 

F,, (r) - 2BoA (FoF,,) = A%, - 2A,,41 - r2/x,  ( 2 . 4 )  

% ,  (r) = [BoF~ (r) - 3B,l~o (r) Fl (r) l ~,,2 - B,F~ '+a (r) (n = 0, 1, 2), 

g " ( l )  g " ( l )  + ( ! / 3 ) g ' ( l )  g ' ( l )  + (1 /4)gIV(l )  
�9 B o  = 1 - 2g(I-'--') ' B1  = 2 g ( l )  , B z  = 6 g ( t )  

Here 6mn is the Kronecker symbol. Condition (2.3) leads to the following representations of 
the coefficients An: 

'~ xdx ( 2 . 5 )  
f ( .  = 0, 1, 2). A. = [2Boro (x) ~ (x) + v .  (x) i 
0 
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We note that the integral equation (2'4) is nonlinear for n = 0 and linear for n = I, 2. 
To eliminate the expansion factor B0 when n = 0 we Write F0(r) as 

ro (,) = c ~  r 

Then f r o m  ( 2 . 4 ) ,  ( 2 . 5 )  we h a v e  an  i n t e g r a l  e q u a t i o n  f o r  d e t e r m i n i n g  O ( r ) :  

~o (r) = CAso 2 - 2~/1 - r2/rc, ( 2 . 6 )  

An approximate solution of Eq. (2.6) can be obtained by the method of successive approxi- 
mations using the scheme 

~,,+t (r) = ~0 (O + C,,A~, ( m = 0 ,  1 . . . . .  M), ( 2 . 7 )  

~0 (r) = - ~ ~1 - r 2 Cm = x ~  (x) 
' lvTZ-- 7 ] 

The f u n c t i o n s  ~m(r )  c a n  be f o u n d  i n  e x p l i c i t  f o r m  f o r  e a c h  v a l u e  o f  m when s cheme  ( 2 . 7 )  
is realized. 

It is desirable for the values n = i, 2 to recast Eqs. (2.4), (2.5) into a form that 
does not contain An: 

F. (r) - 2BoAl (r0F,,) = AI~,, (:~ = 1, 2), 
t 

~ d x .  
0 

(2.8) 

The solution of Eq. (2.8) can be obtained by the Bubnov-~alerkin method. 
method we look for the solution of Eq. (2.8) in the form 

With this 

r,, (r) = ~ ,q - - - - 2 / ~ ;  x,,,v~ (,-) (,, = 1, 2), ( 2 . 9 )  
i=0 

where Um(r) are Chebyshev polynomials of the second kind. The application of the Bubnov- 
G a l e r k i n  p r o c e d u r e  t o  Eq. ( 2 . 8 )  w i t h  a l l o w a n c e  f o r  ( 2 . 9 )  r e d u c e s  i t  t o  t h e  f o l l o w i n g  s y s t e m s  
of linear algebraic equations in coefficients Xni (n = I, 2)" 

X .  i 4B0 = - - -~-  ~ ,  X, , iH j :  = D, 0 ( j  = O, 1 . . . .  ) ,  
i=0 

H , : 2 ) )  l~'~ lFo(OPi(2y2-1)u~(Odxdy - �9 
0 0 

1 

- ~:o f xro (x) U~ (x) dx (t = xy), 
0 

t [ l 

a,: = 2 f f  xyV,, (.v)P:(2/- 1)v,-d=-dY_ ~: bjo f xv,,(=)~dx. 
0 0 O 

H e r e  P j ( x )  a r e  L e g e n d r e  p o l y n o m i a l s .  S i n c e  c o n d i t i o n  ( 2 . 3 )  was s a t i s f i e d  by t h e  c h o i c e  o f  
c o n s t a n t s  An, t h e  c o e f f i c i e n t s  Xni  d e t e r m i n e d  f r o m  ( 2 . 1 0 )  s h o u l d  s a t i s f y  t h e  r e l a t i o n  

(2.1o) 

]~(2i+l)x.,=o ( . = t , 2 ) .  
i = 0  
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Direct calculations from the above formulas were made for 

g (x) = exp ( - x ) .  ( 2 . 1 1 )  

These calculations gave B0 = 1/2, BI = 1/3, B 2 = -i/8, A0 = 2.14, AI = 20.5, A 2 = 153. 
Systems (2.10) for n = 1 and n = 2 were solved by the reduction method. 

3. The solution found in Sec. 2 corresponds to relatively long cracks with a relatively 
small opening. Let us now consider the case of a relatively large opening. For this pur- 
pose we introduce the notation 

= k/p, F l =  lIF. 

As a result Eq. (1.3) becomes 

1 m 

I # (ra)  ~oo f _~ IF ) r Or "~r XF (X) dx Jo (ur) go (ux) du - ~ / - 
0 

1 (O~<r~< 1); ( 3 . 1 )  

F ( I )  = O, F'(1) = O. ( 3 . 2 )  

The subscript 1 is omitted from F in (3.1), (3.2), and henceforth. Inverting the operator in 
(3.i), (3.2), we have 

2 2p.f  d~ f xf(F/~t)dx ( O ~ r ~  1). (3.3) r(r) ~Vq_r  ~ -  
= o 

This equation is equivalent to (3.1), (3.2) upon satisfaction of the relation 
1 

Ix/(F/~), k (3.4) 
- -  t.I ~_  x-, s = -~ , 

0 

w h i c h  f o l l o w s  f r o m  t h e  s e c o n d  c o n d i t i o n  ( 3 . 2 ) .  To s o l v e  E q s .  ( 3 . 3 ) ,  ( 3 . 4 )  f o r  s m a l l  v a l u e s  
of ~ we use the method of spliced asymptotic expansions [4]. The external (penetrating) 
solution outside the contour of the crack for ~ << I and with allowance for the properties of 
the function g(x) can be obtained from (3.3). It has the form 

ro (r) = 2 ~ - P/~ .  

We now c o n s i d e r  t h e  e - n e i g h b o r h o o d  o f  t h e  p o i n t  r = 1.  We i n t r o d u c e  t h e  n o t a t i o n :  

p = (1 - r)/e, s = (1 - ~) /e ,  t = (I - x ) / e .  ( 3 . 5 )  

As the boundary of the E-neighborhood is approached the external solution with (3.5) 
taken into account assumes the form 

F0(r) = 2 f2~9/ 'x .  

For splicing, therefore, we look for the internal solution in the form 

r (r) = VTq (p) + o (v7).  

I n t r o d u c i n g  ( 3 . 6 )  i n t o  ( 3 . 3 )  a n d  g o i n g  o v e r  t o  t h e  i n t e r n a l  v a r i a b l e ,  we f i n d  

(3.6) 

p 

q ( p ) = ~  9 - ~  ~ ~ d t  (O6p< ~), "/E=~r • 
0 s 

Then, changing the order of integration and calculating the internal integral, we 
f i n a l l y  o b t a i n  

2 f _ _  
q ( p ) = ~ v 2 ~ - ~  /(q) ln ~ + r d~ ( O ~ p < ~ ) .  

0 '  

(3.7) 
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~ plT---i:'~ . . . . .  

o ~:; 2Z-- 40 ~ I  6'0 

Fig. I 

Similarly, condition (3.4) becomes 

•  1 

From (3.8) we find the critical force 

f / (q) dt 
J = j--~-- 

0 

(3,8) 

p =v~fJ. (3.9) 

We note that in the given problem on the basis of the Griffiths energy principle for 
determining the critical force Sack obtained the formula [2] 

p =~!-~67!a, 

which we write in the dimensionless quantities used here as 

(3.10) 

p = ~ ] ) .  (3.11) 

For the case (2.11) we obtained p = J~.00~l and p = ~ from formulas (3.7).-(3.9) and 
(1.2), (3.11), respectively. The integral equation (3.7) was solved by the method of 
successive approximations, with q0(P) = 2@2p/~ taken for the zeroth approximation. In the 
numerical integration the logarithmic singularity in the integrand in (3.7) was eliminated 
by using integral 4.339 of [5]. 

4. An approximate solution of the integral equation (1.5), (1.6) can be found by the 
method of successive approximations. As the zeroth approximation for the specific value of 
X we must take one of the asymptotic solutions obtained above. Then, changing i in fairly 
small steps, as the zeroth approximation we must take the solution of Eq. (1.5), (1.6) found 
for the previous value of X. Figure 1 shows the values of the limiting load p calculated 
from (2.2), (3.9), and (1.6) (curves 1-3, respectively) for g(x) = exp(-x). The lower branch 
of curve 3 for X,-i < X-I and p < p* (X, = 0.0865, p, = 0.890) since in an open crack in the 

first place a stress-strain state corresponding to this branch is reached as the p load in- 
creases monotonically. For X -l < X, -I (or a < 7.85b) the limiting point p is I, which 

corresponds to fracture after the theoretical breaking point. For X -I ~ 55 the values of p 

obtained from the Sack formula (3.11) and from (1.6) differ by less than 3%. 
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